641.5.06:620.111

I. N. Zapletnicov, D. G. Popov

DYNAMIC MODEL OF MACHINES OF CLEANING OF ROOT CROPS ON TURNING VIBRATIONS

The gain-frequency characteristics of the mechanical system of machine of cleaning of root crops are resulted in the article. A fivemass model is made on turning vibrations, the eigenfrequencies of turning vibrations, relative amplitudes of corners of rollup of the masses, are calculated, amplitudes of corners of rollup of the masses are calculated in the nominal mode of operations of electric motor. The matrices of moments of inertia and coefficients of inflexibility of dynamic model are got.

Keywords: turning vibrations, twirling a corner, amplitude, frequency, free and forced vibrations, matrix.

1.

[1,2].

-150.

© . ., . .; 2016.

,

.

42

2.	_2,3			71 4 1,	4		-150 (.1)	-
	1.	1.	-			3D			_

(<i>I</i>),	(<i>C</i>), /
$1,3.10^{-3}$	-
4,63.10-6	$1,9 \cdot 10^4$
$3,84 \cdot 10^{-4}$	-
-	$4 \cdot 10^{3}$
2,46.10-2	-
7,05.10-5	$1,9.10^{6}$
0,21	-

ISSN 2073-3216					1(52)'2016
1 – – ;4 – [3.4]		; 2 – ; 5 –		(; 3). 9.6
(0,96)	,	(0,375)	3,744	· .	-
					-
, (J ₄) –		(J ₂) – (, (, J ₅) –	${f (J_1)\ (J_3)-\ }$, , _
(C ₃₄),		,		(C ₁₂) (C ₄₅)	(C ₂₃)
	C ₁₂	C ₂₃	C ₃₄	C ₄₅	
. 2.	J1	J2 J3	J4	J5 -150	
. (1)	(2)	[5]	,		-
$\Pi = \frac{1}{2} [C_{12}(\varphi_1 - \varphi_2)]$	$(2)^{2}$	$(y_1, y_2) = (\varphi_2)^2 + C_2$	$(\varphi_2 - \varphi_4)$	$)^{2} + C_{AE}(\varphi_{AE})$	$-\varphi_{\rm s}$) ²] (1)
2 12 12 12	23 VT	2 737 3	113 742	45 VT 4	

_

 $I_3=3,46\cdot10^{-3}$ / ²,

$$T = \frac{1}{2} \left(I_1 \dot{\phi}_1^2 + I_2 \dot{\phi}_2^2 + I_3 \dot{\phi}_3^2 + I_4 \dot{\phi}_4^2 + I_5 \dot{\phi}_5^2 \right)$$
(2)

[6].

$$T = \frac{l_i \omega_i^2}{2} = \frac{l_{inp} \omega_{inp}^2}{2} \tag{3}$$

(4) ,
$$I_{I}=1,3\cdot10^{-3}$$
 / ², $I_{2}=3,86\cdot10^{-4}$ / ².

$$I_4 = 9,91 \cdot 10^{-6}$$
 / ², $I_5 = 2,95 \cdot 10^{-2}$ / ².
2.

2.

		, / 2
1	, –	1,3·10 ⁻³
2	,	3,86.10-4
3		$3,46 \cdot 10^{-3}$
4		9,91·10 ⁻⁶
5		$2,95 \cdot 10^{-2}$

.

[6].

-

-

$$\Pi = \frac{c_{i,i+1}(\varphi_{i+1} - \varphi_i)^2}{2} = \frac{c_{i,i+1\pi p}(\varphi_{i+1} - \varphi_i)^2}{2}$$
(5)

$$\frac{\varphi_i}{\varphi_{\rm np}} = u^2 \tag{6}$$

.

:

$$C_{i,i+1 \, \rm np} = C_{i,i+1} u^2 \tag{7}$$

,

$$_{12}=1,9\cdot10^4$$
 / ; $_{23}=4\cdot10^3$ / .
, (5)
 $_{34}=2,7\cdot10^5$ / , $_{45}=2,7\cdot10^5$ / .
3.

	•	
-		-
		, /
1-2		$1,9{\cdot}10^4$
2-3		$4 \cdot 10^{3}$
3-4		$2,7 \cdot 10^5$
4-5		$2,7 \cdot 10^5$

[7].

$$\frac{d}{\partial t} \left(\frac{\partial T}{\partial \phi_i} \right) - \frac{\partial T}{\partial \varphi_i} = -\frac{\partial \Pi}{\partial \phi_i} \tag{8}$$

:

:

$$\begin{pmatrix} -J_1 \ddot{\varphi}_1 - C_{12}(\varphi_1 - \varphi_2) = 0 \\ -J_2 \ddot{\varphi}_2 + C_{12}(\varphi_1 - \varphi_2) - C_{23}(\varphi_2 - \varphi_3) = 0 \\ -J_3 \ddot{\varphi}_3 + C_{23}(\varphi_2 - \varphi_3) - C_{34}(\varphi_3 - \varphi_4) = 0 \\ -J_4 \ddot{\varphi}_4 + C_{34}(\varphi_3 - \varphi_4) - C_{45}(\varphi_4 - \varphi_5) = 0 \\ -J_5 \ddot{\varphi}_5 + C_{45}(\varphi_4 - \varphi_5) = 0 \end{cases}$$
(9)

(8)

$$\varphi_i = a_i \sin(kt + \alpha) \tag{10}$$

:

:

$$k - ;$$

 $- ;$
 $i^{-} i^{-} i^{-};$
 $a_{i} - i^{-} .$

(10) (9)

(11) [8]:

$$\begin{pmatrix} (I_1k^2 - C_{12})a_1 + C_{12}a_2 = 0 \\ C_{12}a_1 + (I_2k^2 - C_{12} - C_{23})a_2 + C_{23}a_3 = 0 \\ C_{23}a_2 + (I_3k^2 - C_{23} - C_{34})a_3 + C_{34}a_4 = 0 \\ C_{34}a_3 + (I_2k^2 - C_{34} - C_{45})a_4 + C_{45}a_5 = 0 \\ C_{45}a_4 + (I_5k^2 - C_{45})a_5 = 0 \end{cases}$$
(11)

$$C = \begin{bmatrix} -C_{12} & C_{12} & 0 & 0 & 0 \\ C_{12} & -C_{12} - C_{23} & C_{23} & 0 & 0 \\ 0 & C_{23} & -C_{23} - C_{34} & C_{34} & 0 \\ 0 & 0 & C_{34} & -C_{34} - C_{45} & C_{45} \\ 0 & 0 & 0 & C_{45} & -C_{45} \end{bmatrix}$$
(12)

$$A = \begin{bmatrix} I_1 & 0 & 0 & 0 \\ 0 & I_2 & 0 & 0 \\ 0 & 0 & I_3 & 0 \\ 0 & 0 & 0 & I_4 & 0 \\ 0 & 0 & 0 & 0 & I_5 \end{bmatrix}$$
(13)

:

(9)

$$A\ddot{\varphi} + C\varphi = 0 \tag{14}$$

$$\varphi = \left(\varphi_1, \varphi_2, \varphi_3, \varphi_4, \varphi_5\right)^{\mathrm{T}} -$$

$$;$$

$$\varphi = \left(\ddot{\varphi}_1, \ddot{\varphi}_2, \ddot{\varphi}_3, \ddot{\varphi}_4, \ddot{\varphi}_5\right)^{\mathrm{T}} -$$

$$($$

,

(15)

$$(C - k^2 A)\mu = 0 (15)$$

:

$$\mu = (\mu_1, \mu_2, \mu_3, \mu_4, \mu_5)^{\mathrm{T}} - \dots$$

 $(A^{-1}C - k^2E)\mu = 0$ (16)

:

•

, (15) (16),

[9].
$$\Delta(k^2) = |A^{-1}C - k^2E|$$

$$k^2,$$
(15) (16)

,

$$U\mu = \lambda\mu$$

(U

 $(C-k^2A)\mu=0$

$$-\lambda E)\mu = 0 \tag{17}$$

$$k^{-1}, \mu$$
, μ ,

Mathcad. Mathcad

[10].

k,

,

_

,

_

vals . Genvecs , , $U\mu = \lambda\mu,$ mμ μ U: $Um\mu = \lambda m\mu$. т _ μ , (15) (18). : (). , $M = (3,744 \ 0 \ 0 \ 0 \ -$ 50 9,6).

$$a = (C - \omega^2 A)^{-1} M^T \tag{18}$$

4.

,

					•
_					
				,	
	164231	8536	4747	1466	50
1	0,0	0,2446928	-0,1368408	-0,7597271	0,0663366
2	-0,0000006	-0,9692876	0,0731377	-0,6485278	0,0665436
3	0,0014338	0,0221572	0,8980491	0,0020699	0,0675259
4	-0,999999	0,0107518	0,3992232	0,0219065	0,0675604
5	0,0001678	-0,0007118	-0,1002703	0,0417396	0,0675949

(510 /),

5.

5.

		, / 2
1		0,21
2		7,05·10 ⁻⁵
3		$2,5 \cdot 10^{-2}$
4	,	$2,75 \cdot 10^{-3}$
5	, –	9,26.10-3

.

-	-
	, /
1-2	$9,5 \cdot 10^5$
2-3	$9,5 \cdot 10^5$
3-4	$4,1\cdot 10^{3}$
4-5	$1,36 \cdot 10^5$

,

7.

7.

					•
-				,	
	164231	8084	4659	591	18,75
1	0,0001678	0,000127	-0,1058473	0,036954	-0,0674786
2	-0,999999	-0,0017083	0,4019974	0,034096	-0,0674834
3	0,0014337	-0,0035354	0,9091945	0,0312372	-0,0674883
4	-0,0000001	0,9604696	0,0102029	-0,6973069	-0,0684727
5	0,0	-0,2783571	-0,0213482	-0,7143242	-0,0685019

.

-

_

3.

.

1.	Mathcad -160 / // 2014 3 64 70	-
2.	· · · / · · · · // 2013 2 54 61	-
3. ./	. 2013. – 3. – . 34–01. 	-
1. / 2.		,
3.	: «	-
1985. – 408 4.	»/,	, / .
5. 6	- , 1979. — 544 . : , 1976. – 320 .	/
0. 7. :	,	,

,

.

.

08.12.2015 .

51